ON THEIL'S METHOD IN FUZZY LINEAR REGRESSION MODELS
نویسندگان
چکیده
منابع مشابه
Fuzzy Linear Regression Models with Fuzzy Entropy
Fuzzy regression analysis using fuzzy linear models with symmetric triangular fuzzy number coefficient has been introduced by Tanaka et al. The goal of this regression is to find the coefficient of a proposed model for all given input-output data sets. In this paper, we propose a new 1716 E. Pasha et al method for computation of fuzzy regression. The method is constructed on the basis of minimi...
متن کاملA NOTE ON EVALUATION OF FUZZY LINEAR REGRESSION MODELS BY COMPARING MEMBERSHIP FUNCTIONS
Kim and Bishu (Fuzzy Sets and Systems 100 (1998) 343-352) proposeda modification of fuzzy linear regression analysis. Their modificationis based on a criterion of minimizing the difference of the fuzzy membershipvalues between the observed and estimated fuzzy numbers. We show that theirmethod often does not find acceptable fuzzy linear regression coefficients andto overcome this shortcoming, pr...
متن کاملFuzzy least-squares algorithms for interactive fuzzy linear regression models
Fuzzy regression analysis can be thought of as a fuzzy variation of classical regression analysis. It has been widely studied and applied in diverse areas. In general, the analysis of fuzzy regression models can be roughly divided into two categories. The 0rst is based on Tanaka’s linear-programming approach. The second category is based on the fuzzy least-squares approach. In this paper, new t...
متن کاملA matrix method for estimating linear regression coefficients based on fuzzy numbers
In this paper, a new method for estimating the linear regression coefficients approximation is presented based on Z-numbers. In this model, observations are real numbers, regression coefficients and dependent variables (y) have values for Z-numbers. To estimate the coefficients of this model, we first convert the linear regression model based on Z-numbers into two fuzzy linear regression mode...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2016
ISSN: 1225-1763
DOI: 10.4134/ckms.2016.31.1.185